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J. Phys. A: Math. Gen. 23 (1990) 2523-2528. Printed in the U K  

On the convergence problem for lattice sums 

J P Buhler and R E Crandall 
Departments of Mathematics and Physics, Reed College, Portland, OR 97202, USA 

Received 20 September 1988, in final form 28 March 1989 

Dedicated to physicist and Professor Jean F Delord on the occasion of his retirement 

Abstract. Three-dimensional lattice sums I* r-‘, where r is the distance to a * charged 
lattice point, arise in classical lattice point problems ( s  = 0) and the Madelung problem of 
physics and chemistry (s = 1). In the latter case the sum over an infinite lattice is purely 
formal and the value of the Madelung constant must be defined precisely, e.g., via related 
convergent sums or analytic continuation in s. Indeed, the partial sum over the sphere 
r < R does not converge as R becomes large. Here we verify a conjecture of J F Delord 
that convergence can be obtained by neutralising each sphere with an appropriate surface 
charge. Specifically, if LR(s) is the sum over the lattice points in the sphere r <  R then, 
for neutrally charged lattices, we show that as R goes to infinity the difference LR(s)- 
R-’L,(O) approaches L(s), where L(s) is defined by analytic continuation. When s = 1 
the term L(1) is the Madelung constant and L,(O)/R is the Coulombic correction term. 

1. The convergence problem 

The familiar Madelung constant for the NaCl crystal is defined, formally, to be the 
infinite sum 

over all non-zero integer triples (x,, x2, x3) E Z 3 .  Since the sum does not converge 
absolutely it must be defined in some unambiguous fashion; this convergence problem 
is especially difficult when ‘natural’ orderings of the terms do not give convergent sums. 

One reasonable idea is to sum the terms in a sphere of radius R and then let R go 
to infinity. Unfortunately this procedure is not convergent (Borwein er a1 1985). 
However, summation over larger and larger cubes does converge (Evjen 1932, Calara 
and Miller 1976, Borwein and Borwein 1986). A clue to the failure of the spherical 
method is that the charge in the interior of the sphere 

fluctuates radically even though the infinite crystal has neutral symmetry. This fluctu- 
ation can be traced to the fact that if a sphere is cut out of a crystal then the detailed 
structure of the spherical surface is extremely complicated, favouring positive or 
negative charges alternately as the radius R changes. It was conjectured to us by 
Delord (1988) that summing over spheres should work if one were to somehow ‘add 
back’ the missing charge -Q(R) .  Specifically, he conjectured that if MR is the 
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Madelung sum over the region 0 < 1x1 < R then the limit 

R-CC 
(1 .3)  

should exist and be equal to the traditional Madelung constant M as obtained via 
analytic continuation or other convergence procedures. The physical motivation is 
that if one placed a charge of - Q ( R )  on the surface of the sphere then the (finite) 
crystal would be neutral and the approximation to the Madelung constant should be 
more accurate. 

The purpose of this paper is to give a surprisingly straightforward proof using 
contour integration techniques; there is no additional effort involved in proving this 
for more general lattice sums constructed as follows. Define a lattice sum over integer 
3-tuples by 

where X E  C is a complex number and d E [0, 1)3 is a 3-tuple. For Re(s)> 3 it is a 
standard fact that this sum converges absolutely as R + CO and that the resulting function 
of s has an meromorphic continuation to the entire complex s-plane (Terras 1985, 
Glasser and Zucker 1980, Crandall and Buhler 1987). Let L ( s )  denote this continuation 
and let 6 be 1 if d = ( O , O ,  0) and let 6 be 0 if d is non-zero. 

Theorem. For all s with Re(s) > 0, 

= L ( s ) .  
R - r  3 ( 3  - s )  

(1.5) 

Remarks. ( i )  This result can be extended to more general three-dimensional lattice 
sums; for instance, to lattices not centred at the origin. The ideas can be modified to 
apply to higher-dimensional lattice sums, but the result is more elegant in the three- 
dimensional case. 

(ii) The proof in the next section uses various estimates of contour integrals common 
in the study of Dirichlet series in analytic number theory. It is possible to give another 
proof using Green’s theorem by thinking of LR(s)  as a potential; the analytical details 
are substantially more complicated, but this proof has the advantage of applying to 
more general regions by showing that the lattice sum converges when summed over 
any sequence of increasing regions with zero net charge. 

(iii) The function LR(s)  is related to many well studied lattice sums. For example, 
the number of lattice points within a sphere of radius R is LR(0) (for d = O ) .  The 
problem of evaluating the order of growth of this (and related sums) has engaged 
number theorists for many years (Walfisz 1924, Grosswald 1985). For non-zero d it 
is known that L R ( 0 ) / R 3 ’ 2  is bounded and that L R ( 0 ) / R  is unbounded as R becomes 
large (Landau 1962). The determination of the true order of growth-i.e. the smallest 
a such that LR(0) = O( R‘+‘) for all positive &-is an outstanding open problem that 
is the three-dimensional version of the Gauss circle problem. 

(iv) The Madelung problem itself is to evaluate L(1) (for various d ) .  To this day 
no closed form evaluation of this sum is known for any physically meaningful crystal 
lattice. Much work has been done on this evaluation problem (Glasser and Zucker 
1980, Crandall and Buhler 1987 and references therein), typically leading to summations 
with exponentially decaying summands. 
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(v) Note that when d # O  the theorem, together with fact that LR(O)/R is 
unbounded, immediately implies the known fact that the L,(l)  does not converge as 
R becomes large. Indeed, the difference between L R ( l )  and the fluctuating term 
LR(0)/  R converges to L( 1) so LR( 1) does not converge at all. The theorem also implies 
the standard result that if LR(0) = O(R‘)  then 

lim LR ( S) = L( S) for Re(s) > c. (1.6) 
R - r  

Of course, as mentioned above, the determination of the smallest possible value of c 
is an open problem. 

2. The contour integral method 

We start by recalling the well known analytic continuation of L(s). Define 

~ ( s ) =  C e2r;’dvlU/-‘ and L ( s ) =  c I u - d l - ‘  (2.1) 
V E ~ 3 , L ~ ~  ut Z 3 ,  C #  d 

for a fixed d E [0, l )3 .  These sums converge absolutely for Re(s) > 3 and have meromor- 
phic continuations to the complex plane that satisfy a functional equation: if 

A ( S )  = 7 r - S / 2 r ( ~ / 2 ) ~ ( ~ )  and X ( S )  = 7r-s’2r(~p)L(s) (2.2) 

then 

h ( s )  = ;1(3 - s). (2.3) 

Moreover, h(s) is analytic everywhere unless d is an integral 3-tuple, in which case 
it is analytic except for a simple pole with residue 47r at s = 3. 

Let H ( x )  be the function 

i f x < l  

i f x >  1. 
H ( x ) =  i f x = l  (2.4) 

Perron’s formula states that if c is positive then 

For positive real x define the truncated series L,(s) by 

(This differs slightly from notation of the previous section since terms on the boundary 
are treated differently if x is exactly equal to IvI for some U ;  this notational discrepancy 
is unimportant since the left-hand side of (1.5) in the theorem is easily seen to be a 
continuous function of R. Thus it suffices to prove the theorem for R not a square 
root of an integer, so R f IuI for any U, and thus the treatment of the terms on the 
boundary is ultimately unimportant.) 
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Now use Perron's formula to evaluate L x ( w )  for a complex number w with real 
part U = Re( w ) :  

ds 
L ( s + w ) x s + w -  

s - w  21ri c--u-ioc S 
L( S)XS - - - ds - 

ru+ix 
c - u + i x  

S 

where 3 < c (so that the first contour integral is in the region of absolute convergence 
of L(s)), and 0 s  U < c. 

Now use this formula, together with a little algebra and the same formula for w = 0, 
to get 

ds  
L , ( w ) - x - w L , ( o )  = wx-w- L( s ) x 5  -. 

21ri c - ix  s(s - w )  

Replace the integral over the vertical line by the integral over the contour (Y in 
figure 1. The difference is an integral over a rectangle that can be easily evaluated by 
Cauchy's residue theorem; there are simple poles at s = 0, s = w, and (if d = 0) s = 3. 
The result is 

4776 wx3 - 1 ds 
L x ( w ) - x - w L x ( o ) =  - x - " L ( o ) + L ( w ) +  + wx-wG I, L(s)xs- (2.9) 

3(3 - w )  s(s - w )  

where 6 is as in the statement of the theorem. The crux of the theorem is that the 
contour integral can be sharply bounded. 

Lemma. For any positive E 

1 
(2.10) 

In fact, the proof will show that the integral is bounded by a constant times log(x). 

3-1 
2 - J  c + iT 

s - plane 

I 
\ 3 C I  
s = o  

c - iT 7 
Figure 1. The convergence problem can be reduced to an analysis of the integral of the L 
function along a certain contour. 
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Now let x go to 00 in (2 .9) .  Since Re( w )  > 0 and L(0)  is a constant it follows from 
the lemma that 

= L( w ) .  
3(3 - w )  

L , (w) -x -”L , (O) -  (2.11) 

Since this is our main result the proof of the theorem has been reduced to the proof 
of the lemma. The proof of the lemma relies on standard techniques in analytic number 
theory; we sketch the ideas. 

The integrals along the upper and lower infinite vertical segments of a are easily 
bounded by noting that IL(s)l S IL(c)l and (s (s  - w ) ) - ’  = O(t-’)); the contributions from 
these segments are O(x‘T-I ) .  

The integral along the upper and lower horizontal segments can be bounded by 
using Stirling’s formula and the PhragmCn-Lindelof theorem to derive (see, e.g., Ivic 
1985, p 25) 

(2.12) I L (  c7 + i t ) /  = O( t c - 3 ’ 2 )  3 - c < U < c. 

It is then easy to show that the integral along these segments is O(xCTC””’) .  
In order for all of the error terms to be small it is necessary to take c to satisfy 

3 < c < 7 / 2  and T = x ” ( ~ - * ~ ) .  
The integral along the finite vertical segment of a is more interesting. Change 

variables by replacing s by 3 - s in the integral on the upper part of that segment; use 
the functional equation to get (a non-zero constant times): 

(2.13) 

By using the absolute convergence of the series for t(s) on the line Re(s) = c > 3, and 
using Stirling’s formula to show that higher-order terms can be ignored, one finds that 
it suffices to bound 

(2.14) 

where 

f ( t ) =  t l og ( t ) - t+ t  l og (2nx lv -d l )  (2.15) 

and where to is an arbitrary constant. 
This oscillatory integral can be bounded by the method of stationary phase (or 

‘saddle point’) method. To make this rigorous we need two elementary estimates on 
exponential integrals (see Titschmarsh 1951, ch IV, or Ivic 1985, p 56). Suppose that 
g ( x )  is a positive monotonic function such that Ig(x)l d G for x E [ a ,  b ] .  Let 

(2.16) 

The two results in question are as follows. 
( A )  I f f ’  is monotonic and I f ’ (x ) l>  m then I I ( f ,  g ) 1 < 4 G / m .  
( B )  I f f  is twice differentiable and I f ” ( x ) l >  m then I I ( f ,  g ) l <  8 G / f i .  We will 

apply these facts to bound the integral in each term in the sum for I in (2 .14) .  Note 
thatf’(t)=log(t)- log(2vxl~-dl)  a n d f “ ( t ) =  l / t ;  the unique critical point off  is at 
f ’ = 2 V x l v - - d l .  
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If T <  t , / 2 ,  i.e. U is large enough so that l u - d l s  T / T x ,  then result ( A )  says that 
the integral is bounded by a constant that is independent of U and x. 

On the other hand for U small, i.e I v - d I < T /  T X ,  the integral is bounded outside 
the interval [ t , / 2 , 2 t , ]  as above by result ( A ) ,  and bounded inside the interval by the 
inequality 

I I*" t r - 7 / 2  e i / ( f l  dt  I s ~ ( P X I U  - dl)'-'/*-= O ( X ' - ~ / U  - (2.17) 
'112 

which is a consequence of result (B) .  
All in all we find that the expression I in (2.14) is bounded by a constant times 

I U - dl -3  + a bounded function of x. 
I v - d l <  T / (  TIX I 

(2.18) 

It is a standard fact that this sum, which is analogous to the sum Z,,, n - ' ,  is bounded 
by a constant times log( T / x )  = O(log(x)), so that the contour integral in question is 
clearly O ( x ' )  for all positive E.  (Alternatively, replacing summation over a sphere 
with summation over a larger cube leads to an elementary estimate that shows that 
the sum is O(x').) This finishes the estimation of all of the terms in the contour integral 
(2.10) and, by earlier remarks, finishes the proof of the lemma and the theorem. 
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